Dichotomy for Holant* Problems with a Function on Domain Size 3
نویسندگان
چکیده
Holant problems are a general framework to study the algorithmic complexity of counting problems. Both counting constraint satisfaction problems and graph homomorphisms are special cases. All previous results of Holant problems are over the Boolean domain. In this paper, we give the first dichotomy theorem for Holant problems for domain size > 2. We discover unexpected tractable families of counting problems, by giving new polynomial time algorithms. This paper also initiates holographic reductions in domains of size > 2. This is our main algorithmic technique, and is used for both tractable families and hardness reductions. The dichotomy theorem is the following: For any complex-valued symmetric function F with arity 3 on domain size 3, we give an explicit criterion on F, such that if F satisfies the criterion then the problem Holant∗(F) is computable in polynomial time, otherwise Holant∗(F) is #P-hard.
منابع مشابه
The Complexity of Holant Problems over Boolean Domain with Non-Negative Weights
Holant problem is a general framework to study the computational complexity of counting problems. We prove a complexity dichotomy theorem for Holant problems over the Boolean domain with non-negative weights. It is the first complete Holant dichotomy where constraint functions are not necessarily symmetric. Holant problems are indeed read-twice #CSPs. Intuitively, some #CSPs that are #P-hard be...
متن کاملA Complete Dichotomy Rises from the Capture of Vanishing Signatures
We prove a complexity dichotomy theorem for Holant problems over an arbitrary set of complex-valued symmetric constraint functions F on Boolean variables. This extends and unifies all previous dichotomies for Holant problems on symmetric constraint functions (taking values without a finite modulus). We define and characterize all symmetric vanishing signatures. They turned out to be essential t...
متن کاملA New Holant Dichotomy Inspired by Quantum Computation
Holant problems are a framework for the analysis of counting complexity problems on graphs. This framework is simultaneously general enough to encompass many other counting problems on graphs and specific enough to allow the derivation of dichotomy results, partitioning all problem instances into those which can be solved in polynomial time and those which are #P-hard. The Holant framework is b...
متن کاملOn Holant Problems
We propose and explore a novel alternative framework to study the complexity of counting problems, called Holant Problems. Compared to counting Constrained Satisfaction Problems (#CSP), it is a refinement with a more explicit role for the function constraints. Both graph homomorphism and #CSP can be viewed as special cases of Holant Problems. We prove complexity dichotomy theorems in this frame...
متن کاملFrom Holant To #CSP And Back: Dichotomy For Holant Problems
We explore the intricate interdependent relationship among counting problems, considered from three frameworks for such problems: Holant Problems, counting CSP and weighted H-colorings. We consider these problems for general complex valued functions that take boolean inputs. We show that results from one framework can be used to derive results in another, and this happens in both directions. Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1207.2354 شماره
صفحات -
تاریخ انتشار 2012